### Apr

#### 4

# Inversions and Concordances, from Victor Niederhoffer

April 4, 2014 |

In one's continuing efforts to improve oneself, one read a chapter on quick ways of computing the determinant in chapter 3 of Braun's *Differential Equations and Their Application*. One never thought he'd have to use determinants again as they had their vogue 60 years ago. However, one came across a curious method which was totally unfamiliar to such as one: "First we pick an element A1j from the first row of the matrix. Then we multiply A1j by an element A2i from the second row of A. However j must not equal i. next we multiply these two numbers by the element in the third row of a in the remaining column". Then you must figure out whether to multiply by +1 or -1 and there you come into the computation of an inversion. An inversion occurs when two pairs in a series are out of order with respect to time and magnitude. See "Kendall's Tau for Serial Dependence".

I believe that the running total of the number of inversions in a time series might be useful for prediction purposes in markets, and I will do some counting now that I am back from California attending the notorious Uncle Howie's 75th birthday. It was a grand birthday with many great handball and paddle ball players in attendance along with a Dr. Harvey Eisenberg, inventor of the total body scan who saved a few lives of the attendees including mine. However, there was one discordant note. Howie is no longer the uncle of legend who will argue with a referee for 20 minutes over a call, and threaten to punch you in the face if you block him out. He has turned mellow in the last 15 years. Everything I wrote about him being the world's best at grabbing defeat at the jaws of victory because of his terrible temper must now be revised and gainsaid.

## anonymous writes:

I've also been coming back to determinants, although not computationally. Chapter 9 of Birkhoff & MacLane is full of food for thought. The book throughout emphasizes "universals". The authors want to show, for example, that a concept like "multiplication" (think grouping stones) is not just something your teacher taught you because her teacher taught it to her and that's how we do things. So rather than thinking about determinants as the "size change" of a linear map, the determinant is the universal, only, unique, function that's multilinear f(a*x)=a*f(x), alternating f(x,y)=-f(y,x), and f(id)=id. One then shows remarkable properties of any function passing these three tests, such as any function passing them can be used to compute eigenvalues and thus to characterize a matrix operation in any basis.

(An important bit of context is that one often assumes linear maps will be repeated so much that "linear" then becomes "what happens during an instant of time". A second important bit of context is that any group operation can be represented as a matrix.)

# Comments

3 Comments so far

## Archives

- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- July 2007
- June 2007
- May 2007
- April 2007
- March 2007
- February 2007
- January 2007
- December 2006
- November 2006
- October 2006
- September 2006
- August 2006
- Older Archives

## Resources & Links

- The Letters Prize
- Pre-2007 Victor Niederhoffer Posts
- Vic’s NYC Junto
- Reading List
- Programming in 60 Seconds
- The Objectivist Center
- Foundation for Economic Education
- Tigerchess
- Dick Sears' G.T. Index
- Pre-2007 Daily Speculations
- Laurel & Vics' Worldly Investor Articles

If you (Victor) especially, or any of the other contributing authors were to review either of these two books, I’d enjoy reading what you have to write of your thoughts on the books. The first one is The China Study, by Dr. T. Colin Campbell and the second one is The Boys in the Boat, by Daniel James Brown.

I’m just beginning to read your book, The Education of a Speculator.

I’ve also been coming back to determinants, although not computationally. Chapter 9 of Birkhoff & MacLane is full of food for thought. The book throughout emphasises “universals”. The authors want to show,

for example, that a concept like “multiplication” (think grouping stones) is not just something your teacher taught you because her teacher taught it to her and that’s how we do things. So rather than

thinking about determinants as the “size change” of a linear map, the determinant is the universal, only, unique, function that’s multilinear f(a*x)=a*f(x), alternating f(x,y)=-f(y,x), and f(id)=id. One then

shows remarkable properties of any function passing these three tests, such as any function passing them can be used to compute eigenvalues and thus to characterise a matrix operation in any basis.

(An important bit of context is that one often assumes linear maps will be repeated so much that “linear” then becomes “what happens during an instant of time”. A second important bit of context is that any

group operation can be represented as a matrix.)

I’ve also been coming back to determinants, although not computationally. Chapter 9 of Birkhoff & MacLane is full of food for thought. The book throughout emphasises “universals”. The authors want to show, for example, that a concept like “multiplication” (think grouping stones) is not just something your teacher taught you because her teacher taught it to her and that’s how we do things. So rather than thinking about determinants as the “size change” of a linear map, the determinant is the universal, only, unique, function that’s multilinear

`ƒ(a•x)=a•ƒ(x)`

, alternating`ƒ(x,y)=−ƒ(y,x)`

, and`ƒ(id)=id`

. One then shows remarkable properties of any function passing these three tests, such as any function passing them can be used to compute eigenvalues and thus to characterise a matrix operation in any basis.(An important bit of context is that one often assumes linear maps will be repeated so much that “linear” then becomes “what happens during an instant of time”. A second important bit of context is that fairly general operations can be represented as a matrix.)