This is an interesting study and model of how subsurface processes (involving groundwater flow and erosion) influence topography and eventual river branching.

"River Network Mathematics":

Understanding how river networks originate and evolve is key to understanding how landscapes have evolved in the past, and how they will evolve in the future," says Attal, who did not participate in the research. "What is fascinating about these two papers is that they provide a physical explanation for the geometry of river networks using some very simple concepts. Studies such as these will help better parameterize models and help make more accurate predictions of what may happen in the future.

"Ramifications of Stream Networks":

The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification—the mechanism of branching by which such networks grow—remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2π/5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km2 groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves.


WordPress database error: [Table './dailyspeculations_com_@002d_dailywordpress/wp_comments' is marked as crashed and last (automatic?) repair failed]
SELECT * FROM wp_comments WHERE comment_post_ID = '7922' AND comment_approved = '1' ORDER BY comment_date




Speak your mind


Resources & Links